Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.246
Filtrar
1.
Hear Res ; 443: 108951, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277880

RESUMO

Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In a previous study (Cooper et al., 2018), the region that includes the electro-motile outer hair cells (OHC) and Deiters cells (DC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions and was termed the "hotspot." In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the OHC/DC region was reduced relative to the BM. In this work we further explore the motion of the gerbil basal OCC and find that regions that lack significant sub-BF activity include the BM, the medial and lateral OCC, and the reticular lamina (RL) region. The observation that the RL region does not move actively sub-BF (already observed in Cho and Puria 2022), suggests that hair cell stereocilia are not exposed to sub-BF activity in the cochlear base. The observation that the lateral and RL regions move approximately linearly sub-BF indicates that linear forces dominate non-linear OHC-based forces on these components at sub-BF frequencies. A complex difference analysis was performed to reveal the internal motion of the OHC/DC region and showed that amplitude structure and phase shifts in the directly measured OHC/DC motion emerge due to the internal OHC/DC motion destructively interfering with BM motion.


Assuntos
Cóclea , Órgão Espiral , Animais , Gerbillinae , Estimulação Acústica , Células Ciliadas Auditivas Externas , Membrana Basilar , Vibração
2.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050104

RESUMO

Outer hair cells (OHCs) of the organ of Corti (OoC), acting as bidirectional cellular mechanoelectrical transducers, generate, receive, and exchange forces with other major elements of the cochlear partition, including the sensory inner hair cells (IHCs). Force exchange is mediated via a supporting cell scaffold, including Deiters' (DC) and outer pillar cells (OPC), to enable the sensitivity and exquisite frequency selectivity of the mammalian cochlea and to transmit its responses to the auditory nerve. To selectively activate DCs and OPCs in male and female mice, we conditionally expressed in them a hyperpolarizing halorhodopsin (HOP), a light-gated inward chloride ion pump, and measured extracellular receptor potentials (ERPs) and their DC component (ERPDCs) from the cortilymph, which fills the OoC fluid spaces, and compared the responses with similar potentials from HOP-/- littermates. The compound action potentials (CAP) of the auditory nerve were measured as an indication of IHC activity and transmission of cochlear responses to the CNS. HOP light-activated hyperpolarization of DCs and OPCs suppressed cochlear amplification through changing the timing of its feedback, altered basilar membrane (BM) responses to tones at all measured levels and frequencies, and reduced IHC excitation. HOP activation findings reported here complement recent studies that revealed channelrhodopsin activation depolarized DCs and OPCs and effectively bypassed, rather than blocked, the control of OHC mechanical and electrical responses to sound and their contribution to timed and directed electromechanical feedback to the mammalian cochlea. Moreover, our findings identify DCs and OPCs as potential targets for the treatment of noise-induced hearing loss.


Assuntos
Células Ciliadas Auditivas Externas , Células Ciliadas Vestibulares , Feminino , Masculino , Camundongos , Animais , Células Ciliadas Auditivas Externas/fisiologia , Optogenética , Cóclea/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Órgão Espiral/fisiologia , Mamíferos
3.
J Vis Exp ; (199)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782095

RESUMO

Cochlear hair cells are the sensory receptors of the auditory system. These cells are located in the organ of Corti, the sensory organ responsible for hearing, within the osseous labyrinth of the inner ear. Cochlear hair cells consist of two anatomically and functionally distinct types: outer and inner hair cells. Damage to either of them results in hearing loss. Notably, as inner hair cells cannot regenerate, and damage to them is permanent. Hence, in vitro cultivation of primary hair cells is indispensable for investigating the protective or regenerative effects of cochlear hair cells. This study aimed to discover a method for isolating and cultivating mouse hair cells. After manual removal of the cochlear lateral wall, the auditory epithelium was meticulously dissected from the cochlear modiolus under a microscope, incubated in a mixture consisting of 0.25% trypsin-EDTA for 10 min at 37 °C, and gently suspended in culture medium using a 200 µL pipette tip. The cell suspension was passed through a cell filter, the filtrate was centrifuged, and cells were cultured in 24-well plates. Hair cells were identified based on their capacity to express a mechanotransduction complex, myosin-VIIa, which is involved in motor tensions, and via selective labeling of F-actin using phalloidin. Cells reached >90% confluence after 4 d in culture. This method can enhance our understanding of the biological characteristics of in vitro cultured hair cells and demonstrate the efficiency of cochlear hair cell cultures, establishing a solid methodological foundation for further auditory research.


Assuntos
Mecanotransdução Celular , Órgão Espiral , Camundongos , Animais , Animais Recém-Nascidos , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas Internas/fisiologia
4.
Proc Natl Acad Sci U S A ; 120(34): e2301301120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585469

RESUMO

The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição SOXC , Animais , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Diferenciação Celular , Fatores de Transcrição/metabolismo , Epigênese Genética , Órgão Espiral , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo
5.
Hear Res ; 438: 108859, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579646

RESUMO

Age-related hearing loss (ARHL) is associated with hair cell apoptosis, but the underlying mechanism of hair cell apoptosis remains unclear. Here, we investigated the expression profiles of long noncoding RNAs (lncRNAs) and mRNAs in an ARHL model created with C57BL/6 J mice using RNA sequencing and found that the expression of several lncRNAs was significantly correlated with apoptosis-associated mRNAs in the cochlear tissues of old mice compared to young mice. We found that lncRNA Mirg was upregulated in the cochlear tissues of old mice compared to young mice and its overexpression promoted apoptosis in House Ear Institute-Organ of Corti 1 (HEI-OC1). H2O2-induced oxidative stress increased HEI-OC1 cell apoptosis by upregulating lncRNA Mirg. Furthermore, the expression of lncRNA Mirg and Foxp1 showed the highest correlation coefficient in the cochlear tissues of old mice, and lncRNA Mirg promoted HEI-OC1 cell apoptosis by increasing Foxp1 expression. In conclusion, our findings suggest that lncRNA Mirg expression correlates with cell apoptosis-associated mRNAs in the ARHL model created using C57BL/6 J mice and that oxidative stress-induced lncRNA Mirg promotes HEI-OC1 cell apoptosis by increasing Foxp1 expression. These data suggest the potential therapeutic significance of targeting lncRNA Mirg/Foxp1 signaling in ARHL.


Assuntos
Presbiacusia , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , Camundongos Endogâmicos C57BL , Peróxido de Hidrogênio/metabolismo , Órgão Espiral/metabolismo , Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição/metabolismo , Apoptose , Presbiacusia/metabolismo , Proteínas Repressoras , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
6.
Elife ; 122023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37539863

RESUMO

In vertebrates with elongated auditory organs, mechanosensory hair cells (HCs) are organised such that complex sounds are broken down into their component frequencies along a proximal-to-distal long (tonotopic) axis. Acquisition of unique morphologies at the appropriate position along the chick cochlea, the basilar papilla, requires that nascent HCs determine their tonotopic positions during development. The complex signalling within the auditory organ between a developing HC and its local niche along the cochlea is poorly understood. Using a combination of live imaging and NAD(P)H fluorescence lifetime imaging microscopy, we reveal that there is a gradient in the cellular balance between glycolysis and the pentose phosphate pathway in developing HCs along the tonotopic axis. Perturbing this balance by inhibiting different branches of cytosolic glucose catabolism disrupts developmental morphogen signalling and abolishes the normal tonotopic gradient in HC morphology. These findings highlight a causal link between graded morphogen signalling and metabolic reprogramming in specifying the tonotopic identity of developing HCs.


Assuntos
Galinhas , Cóclea , Animais , Cóclea/fisiologia , Órgão Espiral , Células Ciliadas Auditivas/fisiologia , Glucose/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446272

RESUMO

ATP, as a paracrine signalling molecule, induces intracellular Ca2+ elevation via the activation of purinergic receptors on the surface of glia-like cochlear supporting cells. These cells, including the Deiters' cells (DCs), are also coupled by gap junctions that allow the propagation of intercellular Ca2+ waves via diffusion of Ca2+ mobilising second messenger IP3 between neighbouring cells. We have compared the ATP-evoked Ca2+ transients and the effect of two different gap junction (GJ) blockers (octanol and carbenoxolone, CBX) on the Ca2+ transients in DCs located in the apical and middle turns of the hemicochlea preparation of BALB/c mice (P14-19). Octanol had no effect on Ca2+ signalling, while CBX inhibited the ATP response, more prominently in the middle turn. Based on astrocyte models and using our experimental results, we successfully simulated the Ca2+ dynamics in DCs in different cochlear regions. The mathematical model reliably described the Ca2+ transients in the DCs and suggested that the tonotopical differences could originate from differences in purinoceptor and Ca2+ pump expressions and in IP3-Ca2+ release mechanisms. The cochlear turn-dependent effect of CBX might be the result of the differing connexin isoform composition of GJs along the tonotopic axis. The contribution of IP3-mediated Ca2+ signalling inhibition by CBX cannot be excluded.


Assuntos
Cálcio , Junções Comunicantes , Camundongos , Animais , Camundongos Endogâmicos BALB C , Cálcio/metabolismo , Junções Comunicantes/metabolismo , Receptores Purinérgicos/metabolismo , Órgão Espiral/metabolismo , Audição , Trifosfato de Adenosina/metabolismo
8.
Hear Res ; 435: 108820, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276685

RESUMO

Optical coherence tomography has become the most popular approach to experimental measures of sound-induced vibrations within the mammalian cochlea. Because it is relatively easy to use and works in the unopened cochlea, the measurement of vibratory tuning curves has become highly reliable, and averaging data from multiple animals in different experimental cohorts is now possible. Here I tested a modern statistical approach to compare cohorts for differences in the magnitude and phase of vibration. A linear mixed-effect approach with first, second, third, and fourth-order models to fit the data was tested. The third-order model best fit both the magnitude and phase data without having terms that did not contribute substantively to improving the R2 or the p-value for the independent variables. It identified a difference between cohorts of mice that were different and no difference between cohorts that should not be different. Thus, this approach provides a way to simply compare a full set of tuning curves between cohorts. While further analyses by the investigator will always be needed to study specific details related to the study hypothesis, this statistical technique provides a simple way for the cochlear physiologist to perform an initial assessment of whether the cohorts are same or different.


Assuntos
Cóclea , Vibração , Animais , Camundongos , Estimulação Acústica/métodos , Som , Mamíferos , Órgão Espiral
9.
J Neurosci ; 43(29): 5305-5318, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37369584

RESUMO

One of the most striking aspects of the sensory epithelium of the mammalian cochlea, the organ of Corti (OC), is the presence of precise boundaries between sensory and nonsensory cells at its medial and lateral edges. A particular example of this precision is the single row of inner hair cells (IHCs) and associated supporting cells along the medial (neural) boundary. Despite the regularity of this boundary, the developmental processes and genetic factors that contribute to its specification are poorly understood. In this study we demonstrate that Leucine Rich Repeat Neuronal 1 (Lrrn1), which codes for a single-pass, transmembrane protein, is expressed before the development of the mouse organ of Corti in the row of cells that will form its medial border. Deletion of Lrrn1 in mice of mixed sex leads to disruptions in boundary formation that manifest as ectopic inner hair cells and supporting cells. Genetic and pharmacological manipulations demonstrate that Lrrn1 interacts with the Notch signaling pathway and strongly suggest that Lrrn1 normally acts to enhance Notch signaling across the medial boundary. This interaction is required to promote formation of the row of inner hair cells and suppress the conversion of adjacent nonsensory cells into hair cells and supporting cells. These results identify Lrrn1 as an important regulator of boundary formation and cellular patterning during development of the organ of Corti.SIGNIFICANCE STATEMENT Patterning of the developing mammalian cochlea into distinct sensory and nonsensory regions and the specification of multiple different cell fates within those regions are critical for proper auditory function. Here, we report that the transmembrane protein Leucine Rich Repeat Neuronal 1 (LRRN1) is expressed along the sharp medial boundary between the single row of mechanosensory inner hair cells (IHCs) and adjacent nonsensory cells. Formation of this boundary is mediated in part by Notch signaling, and loss of Lrrn1 leads to disruptions in boundary formation similar to those caused by a reduction in Notch activity, suggesting that LRRN1 likely acts to enhance Notch signaling. Greater understanding of sensory/nonsensory cell fate decisions in the cochlea will help inform the development of regenerative strategies aimed at restoring auditory function.


Assuntos
Cóclea , Órgão Espiral , Animais , Camundongos , Diferenciação Celular/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Leucina/metabolismo , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
10.
Acta Otolaryngol ; 143(5): 359-369, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37104543

RESUMO

BACKGROUND: Free fatty acids (FFAs) could induce inflammatory responses via various pathways. Ferroptosis is characterized by the accumulation of lipid peroxidation products and fatal reactive oxygen species derived from iron accumulation, which may be an upstream event in the inflammatory injuries. OBJECTIVES: To investigate the involvement of ferroptosis during the FFAs-induced pathological hair cell inflammatory injuries and its underlying mechanisms. MATERIAL AND METHODS: We utilized House Ear Institute-Organ of Corti 1 (HEI-OC1) cell line as an in vitro model. The palmitate acid (PA) was utilized as a substitute for FFA, with cotreatment with ferroptosis inducer RSL3 and ferroptosis inhibitor Fer-1. Cell viability, lactase dehydrogenase (LDH) release, the expressions of ferroptosis-related factors such as glutathione peroxidase-4 (GPX4), solute carrier family 7 member 11 (SLC7A11), as well as toll-like receptor 4 (TLR4), ferric ion and reactive oxygen species (ROS), and partial inflammatory cytokines were measured. RESULTS: PA treatment might induce ferroptosis in HEI-OC1 cells, manifested as decreased cell viability, upregulated LDH release, iron overload, and ROS accumulation. Several inflammatory cytokines including IL-1ß, IL-6, IL-1ß, IL-6, TNF-α, MCP-1, IL-13, IL-12 p40, CCL5, G-CSF, and GM-CSF were upregulated compared to the Ctr group, while GPX4 and SLC7A11 were downregulated. The expression of TLR4 in the inflammatory pathway was also upregulated. Besides, these changes were further exacerbated by RSL3 cotreatment and abolished by Fer-1 cotreatment. CONCLUSIONS AND SIGNIFICANCE: Ferroptosis inhibition could alleviate the PA-induced inflammatory injuries via inactivation of TLR4 signaling pathway in HEI-OC1 cell line.


Assuntos
Ácidos Graxos não Esterificados , Ferroptose , Ácidos Graxos não Esterificados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like , Interleucina-6/metabolismo , Órgão Espiral
11.
J Acoust Soc Am ; 153(2): 1347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859114

RESUMO

Optical coherence tomography (OCT) is a common modality for measuring vibrations within the organ of Corti complex (OCC) in vivo. OCT's uniaxial nature leads to limitations that complicate the interpretation of data from cochlear mechanics experiments. The relationship between the optical axis (axis of motion measurement) and anatomically relevant axes in the cochlea varies across experiments, and generally is not known. This leads to characteristically different motion measurements taken from the same structure at different orientations. We present a method that can reconstruct two-dimensional (2-D) motion of intra-OCC structures in the cochlea's longitudinal-transverse plane. The method requires only a single, unmodified OCT system, and does not require any prior knowledge of precise structural locations or measurement angles. It uses the cochlea's traveling wave to register points between measurements taken at multiple viewing angles. We use this method to reconstruct 2-D motion at the outer hair cell/Deiters cell junction in the gerbil base, and show that reconstructed transverse motion resembles directly measured transverse motion, thus validating the method. The technique clarifies the interpretation of OCT measurements, enhancing their utility in probing the micromechanics of the cochlea.


Assuntos
Tomografia de Coerência Óptica , Vibração , Animais , Órgão Espiral , Cóclea , Movimento (Física) , Gerbillinae
12.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901990

RESUMO

Clinically, thyroid-related diseases such as endemic iodine deficiency and congenital hypothyroidism are associated with hearing loss, suggesting that thyroid hormones are essential for the development of normal hearing. Triiodothyronine (T3) is the main active form of thyroid hormone and its effect on the remodeling of the organ of Corti remain unclear. This study aims to explore the effect and mechanism of T3 on the remodeling of the organ of Corti and supporting cells development during early development. In this study, mice treated with T3 at postnatal (P) day 0 or P1 showed severe hearing loss with disordered stereocilia of the outer hair cells (OHCs) and impaired function of mechanoelectrical transduction of OHCs. In addition, we found that treatment with T3 at P0 or P1 resulted in the overproduction of Deiter-like cells. Compared with the control group, the transcription levels of Sox2 and notch pathway-related genes in the cochlea of the T3 group were significantly downregulated. Furthermore, Sox2-haploinsufficient mice treated with T3 not only showed excess numbers of Deiter-like cells but also a large number of ectopic outer pillar cells (OPCs). Our study provides new evidence for the dual roles of T3 in regulating both hair cells and supporting cell development, suggesting that it is possible to increase the reserve of supporting cells.


Assuntos
Perda Auditiva , Órgão Espiral , Animais , Camundongos , Tri-Iodotironina , Células Ciliadas Auditivas Externas , Cóclea , Hormônios Tireóideos
13.
Biophys J ; 122(5): 880-891, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36709411

RESUMO

In the mammalian cochlea, each longitudinal position of the basilar membrane (BM) has a nonlinear vibratory response in a limited frequency range around the location-dependent frequency of maximum response, known as the best frequency (BF). This nonlinear response arises from the electromechanical feedback from outer hair cells (OHCs). However, recent in vivo measurements have demonstrated that the mechanical response of other organ of Corti (OoC) structures, such as the reticular lamina (RL), and the electrical response of OHCs (measured in the local cochlear microphonic [LCM]) are nonlinear even at frequencies significantly below BF. In this work, a physiologically motivated model of the gerbil cochlea is used to demonstrate that the source of this discrepancy between the frequency range of the BM, RL, and LCM nonlinearities is greater compliance in the structures at the top of the OHCs. The predicted responses of the BM, RL, and LCM to pure tone and two-tone stimuli are shown to be in line with experimental evidence. Simulations then demonstrate that the sub-BF nonlinearity in the RL requires the structures at the top of the OHCs to be significantly more compliant than the BM. This same condition is also necessary for "optimal" gain near BF, i.e., high amplification that is in line with the experiment. This demonstrates that the conditions for OHCs to operate optimally at BF inevitably yield nonlinearity of the RL response over a broad frequency range.


Assuntos
Órgão Espiral , Vibração , Animais , Órgão Espiral/fisiologia , Cóclea/fisiologia , Membrana Basilar/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Mamíferos
14.
Nat Commun ; 13(1): 7628, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494345

RESUMO

The auditory function of the mammalian cochlea relies on two types of mechanosensory hair cells and various non-sensory supporting cells. Recent studies identified the transcription factors INSM1 and IKZF2 as regulators of outer hair cell (OHC) fate. However, the transcriptional regulation of the differentiation of inner hair cells (IHCs) and their associated inner supporting cells (ISCs) has remained enigmatic. Here, we show that the expression of the transcription factor TBX2 is restricted to IHCs and ISCs from the onset of differentiation until adulthood and examine its function using conditional deletion and misexpression approaches in the mouse. We demonstrate that TBX2 acts in prosensory progenitors as a patterning factor by specifying the inner compartment of the sensory epithelium that subsequently gives rise to IHCs and ISCs. Hair cell-specific inactivation or misexpression causes transdifferentiation of hair cells indicating a cell-autonomous function of TBX2 in inducing and maintaining IHC fate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas Internas , Camundongos , Animais , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Cóclea/fisiologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Órgão Espiral/metabolismo , Mamíferos/metabolismo
15.
J Acoust Soc Am ; 152(4): 2227, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36319240

RESUMO

The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM). Concomitant deformations of the opposing (or "top") side of the organ of Corti are assumed to play a minor role and are generally neglected. However, analysis of intracochlear motions obtained using optical coherence tomography calls this prevailing view into question. In particular, the analysis suggests that (i) the net local power transfer from the OHCs to the BM is either negative or highly inefficient; and (ii) vibration of the top side of the organ of Corti plays a primary role in traveling-wave amplification. A phenomenological model derived from these observations manifests realistic cochlear responses and suggests that amplification arises almost entirely from OHC-induced deformations of the top side of the organ of Corti. In effect, the model turns classic assumptions about spatial impedance relations and power-flow direction within the sensory epithelium upside down.


Assuntos
Cóclea , Órgão Espiral , Animais , Órgão Espiral/fisiologia , Cóclea/fisiologia , Membrana Basilar/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Som , Vibração , Mamíferos
16.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362134

RESUMO

Different serum thyroxine levels may influence the morphology of the inner ear during development. A well-developed organ of Corti (OC) is considered to be critical to the function of hearing. In our study, we treated mice with triiodothyronine (T3) and found that the opening of the OC occurred sooner than in control mice. We also observed an increased formation of acetylated microtubules and a decrease in the adhesion junction molecule P-cadherin the during opening of the OC. Our investigation indicates that thyroxin affects P-cadherin expression and microtubule acetylation to influence the opening of the OC.


Assuntos
Orelha Interna , Tiroxina , Camundongos , Animais , Tiroxina/farmacologia , Tiroxina/metabolismo , Microtúbulos/metabolismo , Órgão Espiral/metabolismo , Caderinas/genética , Caderinas/metabolismo
17.
Commun Biol ; 5(1): 1285, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424445

RESUMO

Recent observations of sound-evoked vibrations of the cochlea's sensory organ of Corti (ooC) using optical coherence tomography (OCT) have revealed unanticipated and complex motions. Interpreting these results in terms of the micromechanical inner-ear processes that precede hair-cell transduction is not trivial since OCT only measures a projection of the true motion, which may include transverse and longitudinal displacements. We measure ooC motions at multiple OCT beam angles relative to the longitudinal axis of the basilar membrane (BM) by using the cochlea's natural curvature and find that the relative phase between outer hair cells (OHC) and BM varies with this angle. This includes a relatively abrupt phase reversal where OHC lead (lag) the BM by ~0.25 cycles for negative (positive) beam angles, respectively. We interpret these results as evidence for significant longitudinal motion within the ooC, which should be considered when interpreting (relative) ooC vibrations in terms of inner-ear sound processing.


Assuntos
Órgão Espiral , Vibração , Órgão Espiral/fisiologia , Estimulação Acústica/métodos , Membrana Basilar/fisiologia , Células Ciliadas Auditivas Externas
18.
Sci Rep ; 12(1): 18715, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333415

RESUMO

Within the cochlea, the basilar membrane (BM) is coupled to the reticular lamina (RL) through three rows of piezo-like outer hair cells (OHCs) and supporting cells that endow mammals with sensitive hearing. Anatomical differences across OHC rows suggest differences in their motion. Using optical coherence tomography, we measured in vivo and postmortem displacements through the gerbil round-window membrane from approximately the 40-47 kHz best-frequency (BF) regions. Our high spatial resolution allowed measurements across the RL surface at the tops of the three rows of individual OHCs and their bottoms, and across the BM. RL motion varied radially; the third-row gain was more than 3 times greater than that of the first row near BF, whereas the OHC-bottom motions remained similar. This implies that the RL mosaic, comprised of OHC and phalangeal-process tops joined together by adhesion molecules, is much more flexible than the Deiters' cells connected to the OHCs at their bottom surfaces. Postmortem, the measured points moved together approximately in phase. These imply that in vivo, the RL does not move as a stiff plate hinging around the pillar-cell heads near the first row as has been assumed, but that its mosaic-like structure may instead bend and/or stretch.


Assuntos
Cóclea , Órgão Espiral , Animais , Membrana Basilar , Células Ciliadas Auditivas Externas , Movimento (Física) , Gerbillinae
19.
Neurotoxicology ; 93: 301-310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330896

RESUMO

It is known that ototoxicity is the main cause of toxicity induced by aminoglycoside antibiotics. Effects on cochlea and vestibule in vertebrates are variable, depending on the typology of the aminoglycoside and the animal model examined. Despite this, they are routinely used to prevent postoperative and urinary tract infections and in the treatment of tuberculosis and cystic fibrosis. Gentamicin causes hearing loss by damaging stereocilia and by causing degeneration of hair cells due to free radical formation and eventual activation of caspase-dependent pathways. Its toxicity increases with the frequency of administration, dose concentration, and duration of treatment. Turnover of new hair cells may occur spontaneously, throughout life, or may be triggered by an acoustic or ototoxic insult to replace dead cells. Turnover and repair of damage are common in fish and amphibians and in birds' vestibule. In contrast, in the papilla basilaris of birds, and in the vestibule of mammals, hair cell regeneration is activated only after damage. Sensory epithelium repair and hair cell regeneration also occur in the reptiles' vestibule, but no data is available on regeneration or repair in the basilar papilla, involved in sound perception. The purpose of this work is therefore to assess the damage induced by gentamicin on the papilla basilaris of a reptile model organism, the Lacertidae Podarcis siculus. Recovery was also evaluated 3, 8 and 18 days after the end of exposure, in absence of gentamicin and in presence of the otoprotective salicylate. Scanning electron microscopy (SEM) was carried out to check for morphological damage while the occurrence of cell proliferation events was evaluated by fluorescence microscopy, after administration of 5-Bromo-2'-deoxyuridine (BrdU). Results show that salicylate administration facilitates recovery and reduces damage to hair cells after gentamicin treatment. Following the incorporation of bromodeoxyuridine, we demonstrated that sensory epithelium repair and hair cell regeneration have occurred, and that the recovery is due to either proliferation of the supporting cells and/or self-repair of hair cell bundles in the weakly damaged sensory cells.


Assuntos
Lagartos , Ototoxicidade , Animais , Gentamicinas/toxicidade , Ototoxicidade/prevenção & controle , Salicilatos , Órgão Espiral , Antibacterianos/toxicidade , Bromodesoxiuridina , Mamíferos
20.
J Neurosci ; 42(44): 8361-8372, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36123119

RESUMO

The outer hair cells in the mammalian cochlea are cellular actuators essential for sensitive hearing. The geometry and stiffness of the structural scaffold surrounding the outer hair cells will determine how the active cells shape mammalian hearing by modulating the organ of Corti (OoC) vibrations. Specifically, the tectorial membrane and the Deiters cell are mechanically in series with the hair bundle and soma, respectively, of the outer hair cell. Their mechanical properties and anatomic arrangement must determine the relative motion among different OoC structures. We measured the OoC mechanics in the cochleas acutely excised from young gerbils of both sexes at a resolution fine enough to distinguish the displacement of individual cells. A three-dimensional finite element model of fully deformable OoC was exploited to analyze the measured data in detail. As a means to verify the computer model, the basilar membrane deformations because of static and dynamic stimulations were measured and simulated. Two stiffness ratios have been identified that are critical to understand cochlear physics, which are the stiffness of the tectorial membrane with respect to the hair bundle and the stiffness of the Deiters cell with respect to the outer hair cell body. Our measurements suggest that the Deiters cells act like a mechanical equalizer so that the outer hair cells are constrained neither too rigidly nor too weakly.SIGNIFICANCE STATEMENT Mammals can detect faint sounds thanks to the action of mammalian-specific receptor cells called the outer hair cells. It is getting clearer that understanding the interactions between the outer hair cells and their surrounding structures such as the tectorial membrane and the Deiters cell is critical to resolve standing debates. Depending on theories, the stiffness of those two structures ranges from negligible to rigid. Because of their perceived importance, their properties have been measured in previous studies. However, nearly all existing data were obtained ex situ (after they were detached from the outer hair cells), which obscures their interaction with the outer hair cells. We quantified the mechanical properties of the tectorial membrane and the Deiters cell in situ.


Assuntos
Células Ciliadas Auditivas Externas , Células Ciliadas Vestibulares , Masculino , Animais , Feminino , Órgão Espiral , Membrana Basilar , Membrana Tectorial , Cóclea , Gerbillinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...